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CASE REPORT

A novel bi‑alleleic DDX41 mutations in B‑cell 
lymphoblastic leukemia: case report
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Abstract 

Background:  The germline mutations of DDX41, also known as DEAD box RNA helicase 41, have been found in 
about 1.5% of myeloid neoplasms (MNs). Development of MDS/AML is relatively common in germline DDX41 muta‑
tions. However, a variety of hematological malignancies (HMs) have been reported.

Case presentation:  We report a novel case of bi-alleleic DDX41 mutations in B-cell lymphoblastic leukemia (B-ALL), 
with unusual location of DDX41 mutations. The gene expression profile (GEP) of Ph + B-ALL with bi-alleleic DDX41 
mutations showed heterogeneously transitional GEP and altered gene expression levels of genes involved in the 
process essential for red blood cells and myeloid cell differentiation were noted.

Conclusions:  We report that DDX41 mutations are unusual but can be an underlying event in Ph + B-ALL and screen‑
ing DDX41 mutations can be also informative for patients awaiting for haploidentical stem cell transplantation and 
choosing the therapy.
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Background
The awareness of the hereditary basis for hematologic 
malignancies (HMs) is increasing, such germline muta-
tions are found in 4.4% to 18% of HM patients, depend-
ing on population [1]. The germline mutations of DDX41, 
also known as DEAD box RNA helicase 41, have been 
found in about 1.5% of myeloid neoplasms (MNs) [2]. 
Families with DDX41 mutations display an autosomal 
dominant inheritance, with a clinical picture dominated 
by late onset of either myelodysplastic syndrome (MDS) 
or acute myeloid leukemia (AML) [3].

Development of MDS/AML is relatively common 
in germline DDX41 mutations. However, a variety of 
hematological malignancies (HMs) have been reported, 

including rare cases of chronic myeloid leukemia (CML), 
and lymphoma, which means that mutations in DDX41 
cannot be attributed to a specific malignant disorder [4]. 
Therefore, an association between the types of DDX41 
mutations, accumulation of secondary mutations, or type 
of leukemia may pertain to its role in the leukemogenesis.

The processes by which the DDX41 mutation contrib-
utes to the oncogenesis that leads to myeloid neoplasms 
(MNs) have been investigated, but the underlying molec-
ular pathogenesis of DDX41 mutations in B lymphoblas-
tic leukemia (B-ALL) has not been revealed. Genetic 
expression profiling (GEP) has previously proven useful 
in B-ALL for identifying signatures of oncogenes, with 
the recognition of novel subgroups, as well as with out-
come [5]. Therefore, we adopted GEP of a novel case of 
B-ALL with t(9;22) BCR-ABL1 harboring DDX41 ger-
mline and somatic mutations, to uncover the contri-
bution of DDX41 to leukemogenesis. In addition, we 
compared the GEP of the present case with other rel-
evant samples, including B-ALL with t(9;22) BCR-ABL1 
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and AML with bi-alleleic DDX41 mutations, providing 
cluster analysis and thereby taking a step closer to under-
standing of the underlying mechanisms.

Case presentation
Case description
A 48-year-old man with a past medical history of hyper-
tension, hyperlipidemia, and asthma presented with 
fatigue, and night sweats, and there were no palpable 
lymph nodes in his physical examination. Initial com-
plete blood- cell counts included a hemoglobin (Hb) of 
12.5 g/dL, white blood- cell (WBC) count of 22.1 × 109/L 
with 67% blasts on peripheral blood smear, and a plate-
lets count of 91 × 109/L. In the bone- marrow (BM) aspi-
ration, blasts accounted for 88.1% of ANCs, which were 
positive for CD9, CD10, CD13, CD19, CD20, CD34, 
CD38, CD58, CD66c, CD123, HLA-DR, cCD79a, and 
TdT on flow cytometry. The karyotype was revealed as 
46,XY,t(9;22)(q34;q11.2)[10]/47,idem, + der(22)t(9;22)[2] 
by chromosomal tests. BCR-ABL1 fusion was detected by 
FISH analysis and confirmed as a major transcript (b3a2). 
There was no specific familial history for any hematologic 
malignancies.

Genomic sequencing and microarray analysis of expression 
profiles in samples
IKZF1 exon 4 ~ 6 somatic deletion was detected in the 
copy number variant analysis of the next- generation 
sequencing (NGS). Aside from the somatic ABL1 muta-
tion (c.688C > T, p.Pro230Ser), we found two novel 
DDX41 mutations, c.639delC, p.Thr214Profs*8 and 
c.259C > T, p.Leu87Phe, and confirmed the frameshift 
variant of DDX41 being of germline origin by Sanger 
sequencing of skin fibroblast (Fig. 1A, B) (see Additional 
file  4). Both mutations were not reported in gnomAD, 
1000 Genomes, and HGVD database. Sorting Intoler-
ant From Tolerant (SIFT) calculated that p.Leu87Phe has 
deleterious effect and PolyPhen-2 predicted to be prob-
ably damaging.

Genetic analysis was performed on five patients, 
including the present study (Ph + B-ALLIKZF1+/DDX41dm), 
two cases of Ph + B-ALL accompanying IKZF1 deletion 
without DDX41 mutation (Ph + B-ALLIKZF1+/DDX41−), one 
case of AML with double DDX41 mutation (AMLDDX41 

dm), and one case of normal BM, whom were examined 
for HM at Soonchunhyang University Seoul Hospital, 
South Korea, from November 2018 to May 2020. This 
study was approved by the Institutional Review Board 
of Soonchunhyang University Seoul Hospital (IRB no. 
2021–01-003). The fresh BM, whole blood (WB), and 
skin fibroblast specimens were stored at -80  °C before 
genome sequencing and GEP.

Briefly, genomic DNA were extracted from proband’s 
skin fibroblast, WB, and BM samples at initial diagno-
sis using a QIAamp DNA Blood Mini Kit (Qiagen, MD, 
USA) according to standard procedures. Targeted NGS 
with a hematologic malignancy comprehensive panel 
(Celemics, Seoul, South Korea), which examines 85 
hematologic malignancy- associated genes (see Addi-
tional file  1) were performed in all samples. We con-
firmed sequence mutations and exonal deletions by 
Sanger sequencing and multiplex ligation-dependent 
probe amplification (MLPA) (SALSA MLPA P335-C1 
ALL-IKZF1 probemix, MRC Holland, Amsterdam, 
Holland), respectively.

To determine whether two mutations in different 
regions of the DDX41 of the patient were in differ-
ent alleles, the cDNA including region of interest was 
amplified with the following primers (Forward, 5′-gag-
gaagagcagcaggacag-3′; Reverse, 5′-tcatgtcacggccaga-
taga-3′). The PCR product was then cloned into the 
TA-cloning vector (Topcloner TA kit; Enzynomics, 
Daejeon, Korea) and ten clones were sequenced which 
included the corresponding regions of the DDX41.

RNA was extracted from proband’s BM samples at 
initial diagnosis using an RNeasy Micro kit (Qiagen) 
and then evaluated with an Agilent 2100 Bioanalyzer 
(Agilent Technologies, Santa Clara, USA) for RNA 
integrity. We obtained a total of 3.5  µg of cDNA after 
amplification with a GeneChip™ WT Pico Kit (Affym-
etrix, CA, USA) and processed it for GEP. GEPs were 
generated using the GeneChip Human Gene 2.0 ST 
Array (Affymetrix). A robust multi-average (RMA) 
method implemented in Affymetrix® Power Tools 
(APT) was used for data summarization and nor-
malization. The results were exported to gene-level 
RMA analysis and differentially expressed gene (DEG) 
analysis was performed. Statistical significance of the 
expression data was determined using fold change. 
Gene-enrichment and functional annotation analysis 
for a significant probe list was performed using Gene 
Ontology (http://​geneo​ntolo​gy.​org) and KEGG (Kyoto 
Encyclopedia of Genes and Genomes, http://​kegg.​
jp). All data analysis and visualization of differentially 
expressed genes was conducted using R 3.3.2 (The R 
Foundation for Statistical Computing, Vienna, Austria).

We compared the differentially expressed genes 
of Ph + B-ALLIKZF1+/DDX41dm with two cases of 
Ph + B-ALLIKZF1+/DDX41− in order to elucidate the role 
of DDX41 in leukemogenesis. Assessment of differential 
expression between samples was conducted employing 
linear models for microarrays in R, and genes with fold 
change ≥ 3 and p < 0.05 were to be considered significant. 
For a DEG set, hierarchical cluster analysis was done in 
all samples in order to assess the degree of relatedness; 
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and samples were clustered using complete linkage and 
Euclidean distance as a measure of similarity.

Results
The patient visited this medical center outpatient for 
17  years before being diagnosed, and except for April 
2015, when neutrophils were elevated due to pneumonia, 
WBC count was 6.1–10.0 × 109/L and differential count 
was normal. The last visit was 3  years before diagnosis 

and there was no CML related morphologic evidence 
such as basophilia and myeloid proliferation at diagno-
sis. Therefore, it was determined that there would be no 
underlying disease such as CML, the patient was diag-
nosed as B-ALL with t(9;22)(q34.1;q11.2) and received 
induction chemotherapy of modified Hyper-CVAD regi-
men (cyclophosphamide, vincristine, adriamycin, dexa-
methasone and pegylated asparaginase) with imatinib. 
After a month of induction therapy, blasts were decreased 
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Fig. 1  A Schematic representation of the reported germline and somatic DDX41 mutations in hematologic malignancies and present study B 
Clonal architectures of our case series during the course of treatment. Variant allele frequency (VAF) for each mutation is indicated
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to 0.1% of ANCs in the follow-up BM exam, and BCR-
ABL1 transcripts were decreased to < 0.0004% on the 
international scale. The patient received allogenic periph-
eral blood stem cell transplantation (SCT) from a sibling 
donor without germline DDX41 mutation after con-
solidation chemotherapy with high-dose cytarabine and 
mitoxantrone. However, B-ALL relapsed nine months 
later, with an increased WBC count of 85.2 × 109/L with 
81% blasts on peripheral blood.

Clinical features and genetic alterations detected in 
genomic DNA sequencing of all samples are shown 
(see Additional file  2); and the clonal architecture of 
the present case during the course of treatment are 
is depicted in Fig.  1. Two mutations, c.639delC and 
c.259C > T, were confirmed to be present in different 
alleles. Of 53,617 transcripts represented by the micro-
array, 409 were differentially over- or under-expressed 
in a Ph + B-ALLIKZF1+/DDX41dm sample as compared 
to Ph + B-ALLIKZF1+/DDX41− samples. Among those 
409 transcripts, 233 were expressed more abundantly 
and 176 less abundantly in Ph + B-ALLIKZF1+/DDX41dm 
(Fig.  2A). A list of the 409 dysregulated transcripts for 
Ph + B-ALLIKZF1+/DDX41dm is shown in more detail (see 
Additional file  3). To summarize, among DEGs, the 
expression of DDX41 in case sample (Ph + B-ALLIKZF1+/

DDX41dm) was characterized by high-level expression of 
a set of genes involved in p53 signaling pathway when 
compared to Ph + B-ALLIKZF1+/DDX41− samples, whereas 
B cell receptor signaling pathway, PI3K-Akt signaling 
pathway, and NF-kappa B signaling pathway were differ-
entially expressed compared to AML DDX41dm.

To elucidate the biological significance of differen-
tially expressed genes in Ph + B-ALLIKZF1+/DDX41dm, gene 
ontology (GO) analysis of the whole transcriptome was 
performed. Of the 3,214 functional categories exam-
ined, the top DEGs are presented in Fig. 2B. GO analysis 
revealed that significant categories for expressed genes 
seem to have a strong correlation with the process essen-
tial for red blood cells and myeloid cells. Pathway enrich-
ment revealed that there were 11 significant pathways 
were enriched in Ph + B-ALLIKZF1+/DDX41dm compared 
to Ph + B-ALLIKZF1+/DDX41−, and one of the most sig-
nificant pathways was transcriptional misregulation in 
cancer (hs05202) genes (p < 0.001), which contained com-
mon cancer-related genes, such as HIST1H3G, SUPT3H, 
HIST1H3I, BCL2L1, WT1, HIST1H3A, CD86, CDK14, 
CSF1R, and PROM1. Detailed analysis of the dysregu-
lated genes revealed several candidates linked to relevant 
signaling pathways in Ph + B-ALLIKZF1+/DDX41dm, which 
may represent pathogenetically relevant genes. Genes 
associated with proliferation, and cell survival (BCL2L1), 
and tumor- cell growth (WT1) pathways for develop-
ment of cancer were overexpressed, whereas molecules 

relevant to differentiation resistance (CSF1R) were 
underexpressed. Based on hierarchical cluster analysis, 
Ph + B-ALLIKZF1+/DDX41dm can be distinguished from 
Ph + B-ALLIKZF1+/DDX41− and AML DDX41dm and that the 
nature of Ph + B-ALLIKZF1+/DDX41dm is closer to that of 
Ph + B-ALLIKZF1+/DDX41− than to that of AML DDX41dm, as 
shown in heatmap analysis (Fig. 3).

Discussion and conclusions
Inherited DDX41 mutations are always heterozygous 
and usually in frame-shift mutations, indicating a poten-
tial loss-of-function (LOF). Approximately half of MN 
patients with inherited DDX41 mutations acquire a 
second-hit, often R525H, in the healthy DDX41 allele in 
their disease clones [3]. To date, in all reported bi-allelic 
DDX41 mutated HM cases, germline mutations rather 
than somatic mutations occurred relatively at the fore-
front of, except for an MDS case with germline R369G 
and somatic S4*[6]. In our case, the location of DDX41 
mutations differed from that in previous reports, where 
somatic and germline mutations occurred in the N-ter-
minal domain and DEAD box domain, respectively.

Since BCR-ABL1 translocation alone is insufficient for 
malignant transformation, it is known that various com-
plex additional mutations are required for Ph + B-ALL 
development [7]. Over 70% of Ph + B-ALL patients har-
bor IKZF1 LOF [7], however, to the best of our knowl-
edge, concomitant DDX41 mutations have never been 
reported. Furthermore, 5q deletion is also rarely observed 
in ALL, which we hypothesize to have resembled the 
GEP of our case, that deduction of DDX41 mutation on 
lymphoid malignancy is challenging [8]. The previously 
reported cases have shown, DDX41 has been shown to 
be a cytoplasmic DNA sensor in dendritic cells and to 
have a documented role in the innate immune response 
[9]. Therefore, dysregulation of such responses may be 
an initiator of disorders and may be linked to lymphoid 
malignancy.

The interesting feature of our case was the concomi-
tant mutation on ABL1 (c.688C > T, p.Pro230Ser), which 
resides in the SH2-kinase linker domain of ABL1 and is 
seldom observed in a BCR-ABL1 transcript [10]. Associa-
tion of DDX41 mutations with this finding is uncertain,; 
however, DDX41 mutations are largely mutually exclusive 
to with splice- factor mutations [11]. The loss of tumor 
suppressor function because of altered pre-mRNA splic-
ing and RNA processing is another aspect of somatic 
DDX41 mutations [2]. In our case, mutations were not 
detected in genes of the splice-factor family, and an 
explanation for this observation remains elusive.

We found altered gene expression levels of genes 
involved in the process essential for red blood cells, 
which is consistent with previous observations that 
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DDX41 mutations, including LOF, can affect erythroid 
differentiation [12]. For myeloid cell differentiation, 
Ph + B-ALLIKZF1+/DDX41dm had significantly altered lev-
els of expression compared to Ph + B-ALLIKZF1+/DDX41−. 
However, the contribution of DDX41 mutations, includ-
ing gain-of-function, to developing myeloid malignancy 
is not fully understood, but is presumed to be involved in 
the pathogenesis of a certain subset of such AML cases 
[13].

Based on case reports and retrospective analysis, 
lenalidomide has been suggested as an effective treat-
ment strategy for myeloid malignancies with DDX41 
mutations [14]. The patient in our study has undergone 
a combination of modified CVAD and imatinib, which 
is front-line therapy for adult Ph + B-ALL [15]. Because 
of short follow-up time, whether the efficacy of lena-
lidomide might have been beneficial for this patient is 
could not be addressed. However, the genetic testing 

Fig. 2  A Microarray analysis of differentially expressed genes in BM sample obtained from patient with Ph + B-ALLIKZF1+/DDX41dm. Up- and 
down-regulated genes are represented in red. B GO analysis of transcriptome in BM of patient with Ph + B-ALLIKZF1+/DDX41dm. The X-axis represents 
the − log10 (P value) of the given transcripts and the Y-axis shows a detailed description of the roles for the category
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for DDX41 to find an optimal family-member donor 
was performed done in a timely manner.

Herein, we report that DDX41 mutations are unusual 
but can be an underlying event in Ph + B-ALL, although 
the causative link between DDX41 variants and B-ALL 
is yet to be established; however, it shows heterogene-
ously transitional GEP of both Ph + B-ALL and AML 
with DDX41 mutations. Screening DDX41 mutations 
can be also informative for patients awaiting for haploi-
dentical SCT and choosing the therapy.

Abbreviations
B-ALL: B lymphoblastic leukemia; GEP: Gene expression profiling; HM: 
Hematologic malignancy; BM: Bone marrow; WB: Whole blood; SCT: Stem cell 
transplantation; LOF: Loss-of-function.
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